Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

نویسندگان

  • Kristel Kaer
  • Jelena Branovets
  • Anni Hallikma
  • Pilvi Nigumann
  • Mart Speek
چکیده

BACKGROUND Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals. CONCLUSIONS/SIGNIFICANCE Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intronic retroelements

Two well-known retroelements, L1 and Alu, comprise about one third of the human genome and are nearly equally distributed between the intergenic and intragenic regions. They carry different regulatory elements and contribute structurally and functionally to the expression of our genes. Recent data also suggest that hundreds of intronic L1s and Alus interfere with the transcription of human gene...

متن کامل

Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism

Most eukaryotic messenger RNAs are capped, spliced, and polyadenylated via co-transcriptional processes that are coupled to each other and to the transcription machinery. Coordination of these processes ensures correct RNA maturation and provides for the diversity of the transcribed isoforms. Thus, RNA processing is a chain of events in which the completion of one event is coupled to the initia...

متن کامل

Exon-trapping mediated by the human retrotransposon SVA.

Although most human retrotransposons are inactive, both inactive and active retrotransposons drive genome evolution and may influence transcription through various mechanisms. In humans, three retrotransposon families are still active, but one of these, SVA, remains mysterious. Here we report the identification of a new subfamily of SVA, which apparently formed after an alternative splicing eve...

متن کامل

Alport syndrome caused by a COL4A5 deletion and exonization of an adjacent AluY

Mutation-induced activation of splice sites in intronic repetitive sequences has contributed significantly to the evolution of exon-intron structure and genetic disease. Such events have been associated with mutations within transposable elements, most frequently in mutation hot-spots of Alus. Here, we report a case of Alu exonization resulting from a 367-nt genomic COL4A5 deletion that did not...

متن کامل

Conserved arrangement of nested genes at the Drosophila Gart locus.

The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011